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EDF is currently investigating the capabilities of emerging data-driven solutions to assess residual stress 
distribution induced by high-temperature manufacturing processes. 
 
Industrial context: 
 
Residual stresses are generated during manufacturing due to creation of permanent strain during 
material processing. For instance, during a welding operation, high thermal gradients spread through 
the welded component. The difference in cooling rates experienced in different parts of the 
component results in localized variations in thermal expansion and contraction. As a result, these 
phenomena develop non-compatible strains leading to-residual stresses.  
Residual stresses can negatively affect structural integrity. For example, thick-walled structures in the 
as-welded condition are more prone to brittle fracture than a structure that has been stress-relieved. 
The undesired stresses may also influence the fatigue performance. Hence, assessing the level of 
residual stress at the end of manufacturing can reduce design engineering justifications as their level 
and state may affect the fit for service of metal parts in pipes and pressure vessel. 
 
Scientific context: 
 
In this context, Numerical Simulation allows to provide accurate estimations of residual stresses. 
Indeed, Finite Element Methods (FEM) are well-suited to solve the non-linear transient thermo elasto-
plastic PDE system associated with industrial high-temperature manufacturing processes. 
However, accurate simulations of representative industrial cases remain computationally expensive. 
What is more, the simulation set-up and the tuning of simulation parameters is out of reach for 



engineers who do not have skills in numerical simulation. On the contrary, online inference stemming 
from deep learning neural networks offers straight-forward predictions almost in real-time. Yet, the 
complexity of such methods is left to the offline learning process whose design strongly affects the 
accuracy of the predictions. 
 
Internship objective: 
 
The objective of the internship is to design a neural network able to predict the residual stress tensor 
field within a given welded body considering the spatial and temporal evolution of temperature as 
input. 
 
Methods and guidelines: 
 
The architecture of the neural network will be guided by the concept of Physics-Informed Neural 
Networks (PINNs) introduced by Raissi, Perdikaris and Karniadakis in [1]. Such networks are trained to 
solve supervised learning tasks while respecting any given laws of physics described by general 
nonlinear partial differential equations. In the present case, the predicted residual stress tensor should 
abide by the mechanical equilibrium law. 
What is more, the design of the Neural Network should lean on the fact that residual stresses result 
from cumulative plastic deformations of the material in reaction to cyclic thermal loads. 
Integration of thermal history or other historical variables is thus of prime importance. Recent works 
that use PINNs or LSTM neural networks to approximate solutions of history dependent processes can 
be found in the literature (see [2], [3], [4]). 
 
The technical outlines of the internship: 
 

1. The candidate will spend one-month building a strong bibliography around PINNs and 
potential other alternatives 
 

2. The candidate will define a Design of Experiments (DOE) to generate a space-filling dataset of 
numerical simulations. These simulations will be based on a given simple test case 
(Constrained dilatometry “Satoh” experiments). This test case is known to be representative 
of the residual stress generation in metallic heavy section metallic components submitted to 
cyclic high range thermal loads. Simulations will be achieved by using EDF’s open source solid 
mechanics finite element code code_aster. 
 

 
3. The candidate will implement a robust PINN (or another alternative) that will be trained and 

tested using simulations of the previous step. The procedure will be validated against its ability 
to blindly predict a physically-relevant residuals stress distribution within the computational 
domain on a wide range of thermal loads calibrated to represent the welding effects and 
inherent experimental bias. 
 

4. If there is time left, the candidate will try to extent its learning process to more representative 
industrial cases. He will try to improve the transferability of the calibrated deep learning 
algorithm over a wider range of materials, manufacturing conditions and part geometries. 

 

 



Candidate’s profile : 

Core skills: 

The candidate should have strong skills in applied Math and more specifically in Statistics, Machine 

Learning and Deep Learning. Proven experience in supervised and unsupervised learning methods 

will be asked. Besides, the candidate should be familiar with classical optimization algorithms. Fluency 

in Python programming is also a plus. 

Additional skills: 

The candidate should have knowledge in numerical simulation for Mechanics. Learning methods 

developed during this internship will be applied to computational welding mechanics (solid mechanics 

for welding applications). Hence, the candidate should show a strong interest in this field and more 

generally in the domain of manufacturing. 

Transversal skills: 

Internship success depends on the candidate’s scientific curiosity, his/her strong interest in digital 

industry as well as his/her ability to easily work in an interdisciplinary team. 

Internship set up: 
 
The work will be hosted by EDF Lab Chatou and in partnership with Mines ParisTech (Centres des 
Matériaux). The duration of the stage is 6 months minimum, up to 9 months (expected start: spring 
2021).  
 
You can send a CV to David iampietro (EDF lab Chatou) david.iampietro@edf.fr, and put Pierre 
Kerfriden in copy pierre.kerfriden@minesparistech.fr. 
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