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Motion compensated reconstruction using deep
learning for computational optics

Master Project (Lyon, France)

The Camille Jordan Institute and the CREATIS laboratory announce the opening of a six-month intern-
ship position, starting in March 2023. An ANR-funded PhD position will be opened in October 2023
to continue on the same topic.

Keywords Inverse problem, image reconstruction, deep learning, unrolled methods, plug-and-play
methods, optimization.

Medical background Fluorescence-guided surgery (FGS) refers to surgical guidance in brain tumor
resection, where fluorescence imaging has proven to be efficient for glioma resection, with improved
survival rates without recurrence [1]. This technique consists of administration of 5-aminolevulinic acid
to the patient, which is a molecule that is absorbed by the tumor cells and metabolized into protopor-
phyrin IX (PpIX). The PplIX fluorescence signal can be visualized using an intraoperative microscope
equipped with a fluorescence module (excitation, 405 nm; emission, 630 nm). While initial studies
have shown that only high-grade glioma resection can benefit from FGS, several recent studies have
indicated that FGS is also of interest for low-grade gliomas, provided that the full-spectrum information
is measured by point probes [2] or multispectral cameras [3]. While this work paves the way to a better
determination of the tumor margin during surgery, the latter studies considered point measurements
with an external measurement device. It will be highly desirable to perform hyperspectral measure-
ment with the surgery microscope itself, providing the surgeon with real-time imaging rather than a few
point measurements. However, a high spectral resolution is needed to distinguish the two states of PplX.

Preliminary results In a previous project!, we developed a high-spectral-resolution imager that ac-
quires 64 x 64 x 2048 hypercubes in ~10 s. It has a spectral resolution of ~2 nm over a range of
about 230 nm, which has been optimized to detect the PplX fluorescence emission during fluorescence-
guided surgery, and a typical spatial resolution of ~200 pm [4] (see Fig 1). Our acquisition device is
computational, i.e., it acquires

yx ~ PlaAzy), 1< X<2048, (1)

where y), € RM are the raw measurements, P is the Poisson distribution, « is the image intensity,
A € RM*N is 3 matrix containing the spatial light patterns (e.g., a subsampled Hadamard matrix) and
xy € RY is a A-slice of the hypercube of the scene. Therefore, this approach requires a reconstruction
algorithm to recover the hypercube x from the raw data yy given A. In a series of works [5, 6], we
have proposed deep-learning reconstruction methods to solve this task.

Challenge While our reconstruction algorithms allow fast (e.g., hundreds of millisecond) reconstruc-
tion, the acquisition of a single hypercube currently takes ~10 s. This may be sufficient for ex-vivo
samples; however, in-vivo imaging is subject to physiological motion (e.g., heartbeat and breathing)
that occurs at faster rates. Motion of the scene during acquisition creates blur artifacts in the hypercube
recovered, if not taken into account. Indeed, when the scene moves rapidly compared to the acquisition
time, each of the measurements (i.e., the components of y,) sees a different scene, while our current
algorithms assume that the scene is motionless. This is an issue with our current acquisition device
whose acquisition time (e.g., 10 s) typically represents ten cardiac cycles (1 cycle/s).
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Figure 1: Left: picture of our current hyperspectral device (DMD: digital micromirror device, TL:
telecentric lens). Right: Hypercube acquired and reconstructed in the range [515 — 730] nm. The
sample is an ex vivo lamb brain.

Work plan In this internship, we will investigate strategies for the motion-compensated reconstruction
of the scene. To do so, we will consider a hybrib acquisition device that also acquires monochrome/RGB
images at higher frame rates (e.g., 24 fps). We will assume that the scene motion can be estimated
from the monochrone/RGB video flux. In particular, we will consider the real-time motion-compensated
method described in [7], which was dedicated to brain neurosurgery.

Assuming the scene motion is known at each frame, we will investigate efficient methods to recon-
struct a motion-compensated hypercube. Firstly, we will solve this problem with no prior knowledge
about the solution. We will also consider modern strategies that combine traditional regularization
and deep learning [8]. Among them, deep unrolled methods and plug-and-play methods will be inves-
tigated. Our algorithms will be evaluated on synthetic videos with a known motion model, on video
data sets with known motion models [9] , and on video data sets with no known motion models (for
instance, [10]). Secondly, the monochrome/RGB acquisition arm provides complementary information
compared to the spectral arm (i.e., high-spatial low-spectral resolution vs low-spatial high-spectral res-
olution). Therefore, we will formalize this as a reconstruction problem, where the hypercube not only
satisfies the hyperspectral forward model (1), but also a monochrome/RGB forward model, up to the
noise. This approach was found to be among the more memory-efficient for a similar problem known
as pansharpening in the remote-sensing literature (see [11]).

The successful candidate is expected to contribute to an in-house Python package for image recon-
struction. He/she will work in close collaboration with researchers in biomedical imaging, mathematics
and biomedical optics, and will have access to real experimental data.

Skills We are looking for an enthusiastic and autonomous candidate with a strong background in
applied mathematics, image processing, or deep learning. The applicant can be enrolled in either a
Master or Engineering degree program. The following skills will be acquired during the internship,
although prior knowledge on these topics are appreciated:

= Programming in Python, collaborative development (git and github)
= Linear algebra and inverse problems (ill-posed problems, regularization)
= Deep learning (neural network design and optimization, automatic differentiation)
= Hyperspectral imaging
The intern will be part of a team composed of several permanent researchers and engineers and other

interns recruited simultaneously on related topics.

How to apply? Send CV, motivation letter, and academic records to michael.sdika@creatis.
insa-lyon.fr, nicolas.ducros@creatis.insa-1lyon.fr and elie.bretin@insa-1lyon.fr.
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Salary ~€580 net monthly.
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