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Internship proposal

Exact Relaxations for Sparse Optimization.

Context

Sparse models are widely used in machine learning, statistics, and signal/image processing ap-
plications (e.g., coding, inverse problems, variable selection, or image decomposition). A typical
formulation is given by

x̂ ∈
{
arg min

x∈RN
G0(x) := D(Hx;y) + λ∥x∥0

}
, (1)

where D : RM × RM → R measures the discrepancy between the model Hx and the data y
(data-fidelity), ∥ · ∥0 denotes the ℓ0 pseudo-norm that counts the non-zero entries of its argument
(sparsity prior), and λ > 0 controls the trade-off between data-fidelity and sparsity. However, this
problem is non-convex and belongs the NP-complete class of complexity that makes its resolution a
challenging task. Hence, the standard practice aims at replacing the ℓ0 term in (1) by a continuous
sparsity-promoting penalty Φ : RN → R,

x̂ ∈
{
arg min

x∈RN
G̃(x) := D(Hx;y) + λΦ(x)

}
. (2)

A popular penalty function Φ is the ℓ1 norm that can be seen as the best compromise between
sparsity and convexity [1, 2]. However, the bottleneck of this convex relaxation is that it introduces
a bias on large coefficients [3].

This drawback has led to a growing interest in continuous, yet non-convex, relaxations G̃ of the
initial functional G0. The vast majority of existing relaxations have been proposed for the least-
squares penalized problem, where D(·,y) = 1

2∥·−y∥22. In particular, there exists a class of penalties
Φ that lead to exact continuous relaxations of G0 [4, 5, 6] in the sense that

(P1) The global minimizers of G0 and those of the relaxation G̃ coincide,
(P2) Each local minimizer of G̃ is a local minimizer of G0.

In other words, such relaxations (termed as exact continuous relaxations) allow us to “reduce”
the non-convexity of Problem (1) (e.g., less local minimizers, wider basins of attraction) while
preserving its solution(s). These are appealing properties in the context of non-convex optimization.

Objectives

Existing works on exact continuous relaxations [4, 5, 6, 7] were only dedicated to the case of a
quadratic data-fidelity terms D. In a Bayesian framework, this corresponds to the negative log-
likelihood describing the presence of additive white Gaussian noise. However, for many applications,
the quadratic distance is not the choice that best complies with the nature of the data. For instance,
the noise in the observed data y is generally not purely Gaussian but rather has a mixed [8] or
signal-dependent nature [9, 10]. Alternative measures of fit include the generalized Kullback-Leibler
divergence (a special instance of β-divergences [11] with β = 1), the logistic regression loss [12], or
the Huber loss [13].

The main objective of this internship will be to generalize the theory developed in [4, 5] to other
data-fidelity terms D. In particular, one aspect of the work will be to define and analyze generic
and tractable transformations which – when facing a problem of the form (1) – allow us to construct
relaxations with properties (P1) and (P2) based, for instance, on generalised conjugation tools [14].
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Practical aspects

We are looking for a highly motivated student, willing to continue with a PhD thesis, with a
background in mathematics (optimization, probability an statistics, geometry) and/or electrical
engineering (signal/image processing). Strong abilities in computer sciences will be appreciated.

The intern will be granted the usual stipend of ∼ 600 euros/month. If the candidate is successful,
this internship will be pursued by a PhD. Depending on the candidate’s interest, this internship
can take place either at

• i3S Laboratory in Sophia-Antipolis,
• IRIT laboratory in Toulouse.

It will be co-supervised by Luca Calatroni (CR, i3S) and Emmanuel Soubies (CR, IRIT).

Do not hesitate to contact us for more information.
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