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Context - The project is part of an ANR1 project coordinated by Annabelle Collin for Inria Monc’s 
team2 in collaboration with IHU Liryc3. One task of the project is dedicated to the building of 
experimental data which to used in the mathematical part presented below. If the internship goes well, 
there is a possibility of PhD funding. 
 

Subject - This project aims at modeling cardiac electroporation at the cellular scale. One of the main 
characteristics of a biological cell membrane is that it is a semi-permeable layer, that is, it can allow 
only certain molecules to pass through it. For example, a cell can regulate the concentration of certain 
ions inside it by letting in more or less ions from its environment through its membrane. The membrane 
of a cell is mostly made up of a lipid-bilayer, as a result when it is under the influence of an electric 
field it behaves like a dielectric. In contrast, the inside of the cell behaves mostly like an electrolyte. 
When an electric field is applied to a cell, there is an accumulation of charge at the membrane and so a 
transmembrane voltage appears. When this voltage goes above a certain threshold the permeability of 
the cell membrane dramatically increases and so molecules that before could not enter the cell now are 
able to. This phenomenon is called electroporation, see Figure 1. 
 

Figure 1. Electroporation. 
 

A number of models have been proposed to understand and describe this phenomenon [1]. Among 
them, one of the most used in the literature was proposed by W. Krassowska and C. Neu [2] in which 
the state of the cell membrane through a pore density function	𝑁, meaning that 𝑁(𝑡, 𝑥) is the number 
of pores per unit of membrane area at a point 𝑥 on the membrane and at a time 𝑡. Even though this 
model does fit experimental data, there are many limitations as the dependence of non-physical 
constants, the inability to determine membrane rupture or to model interaction between pores or to 
determine pore-size evolution and to consider different pore shapes other than ideal round ones. 
Furthermore, this model makes strong assumptions that cannot be verified as no pore has ever been 
directly seen or measured and lead to not expecting behaviors. Based on our expertise, we prefer to 
model the state of the membrane by a function 𝜙:	𝛤 ⟶ 	ℝ  measuring the amount of lipid in the 
membrane at any position 𝑥  at time 𝑡. The evolution is then given by the 𝐿! derivative of the following 
energy functional 
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where the 1st term corresponds to the membrane diffusion, the 2nd to the potential energy of the 
membrane (𝑊 is a double-well potential) and the 3rd to the influence of the transmembrane voltage 𝑈. 

 
1 https://anr.fr/en/  
2 https://team.inria.fr/monc/  
3 https://www.ihu-liryc.fr/  
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 The equation on 𝜙 is coupled to the microscopic bidomain model  
∆𝑈 = 0, 𝛺%,' ,  Poisson equation, 

𝜎%,'	𝛻𝑈|!" 	.		𝑛 = 	𝜎%,'	𝛻𝑈|!# 	.		𝑛,  conservation of charge across the membrane, 

𝜎%,'	𝛻𝑈|!" 	.		𝑛 = 	𝐶#(𝜙)𝜕)[𝑈]" +	𝑆#(𝜙)[𝑈]" + 𝐼'*(𝑡, [𝑈]"), modeling of current through 𝛤, 

with appropriate initial and boundary conditions. In the above equation, 𝛺% and 𝛺' 	denote respectively 
the cytoplasm and the extracellular medium whose conductivities are 𝜎% 	and 𝜎'. The cell membrane is 
referred to as 𝛤. 𝐶#	and 𝑆#	 are the membrane capacitance and conductance. Several models of the 
electroporation current 𝐼'*	have been derived since several years. However, the changes in the ionic 
and ATP concentrations, and in the cellular volume have not been addressed. This requires to 
complexify dramatically the above PDE to include other aspects of the electroporation 
phenomenon and to adapt it to cardiac cells. In particular, the increasing of cell membrane 
permeability when short high voltage pulses are applied, presumably leads to death of cardiac cells via 
Ca2+ uptake. To quantify what happens for cardiac cells under PFA – apoptosis or necrosis – we will 
complexify the model to describe the in vitro process of the internalization of extracellular species. This 
new model will be included in addition to the creation of conducting defects, the ions and molecules 
effluxes and influxes, as well as cell swelling. 
 

More precisely, since electroneutrality may be broken transiently in the vicinity of the membrane due 
to ion exchanges, electroosmosis model should be preferred. Denoting by 𝒗 the velocity of the 
incompressible fluid of viscosity 𝜂, by 𝑃 the pression inside the fluid, by 𝑛+ the ion concentration of 
the species 𝑘 with valency 𝑧+ and diffusion coefficient	𝐷+ , the coupled system should read 

−𝜂∆𝒗 + 𝛻𝑃 = 	𝑞	 ∑ 𝑧+𝑛++ 𝛻𝑈, 𝛺%,' ,  with 𝛻	. 𝒗 = 0, Stokes equation, 

𝜕)	𝑛+ − 𝛻. (𝐷+ 	𝑛+) + 	𝛻. (𝒗	𝑛+) = 𝑞	𝑧+/(𝑘,𝑇)	𝛻. (𝐷+ 	𝛻𝑈), 𝛺%,', Charge conservation 

−𝛻. (𝜀#	𝛻𝑈) = 		𝑞	 ∑ 𝑧+𝑛++ , Gauss Law, 

where 𝜀# is the electric permittivity of the medium, 𝑞	the Coulomb's charge, 𝑘, the Boltzmann constant 
and 𝑇 the temperature. The transmission across the cell membrane has not yet been derived for this 
complete model, especially in the context of electroporation but our objective is to couple it with the 
equation of the state of the membrane 𝜙 and to define a realistic electroporation current 𝐼'*. The aim is 
to take into account the currents due to passive ion channels, the Na/K-ATPase and the calcium pumps, 
and the Na/H channels which are essential in the cell equilibrium. One can refer to the 
electrophysiological laws as in [3,4,5]. In addition, specific nonlinearities in the jump conditions have 
to be imposed to account for the different degrees of membrane permeabilization. We expect to derive 
such jump conditions thanks to the knowledge of electroporation acquired by classical electroporation 
modeling [6,7] and with a rigorous asymptotic analysis in the same vein as [8]. Our approach will then 
generalize the standard electro quasistatic models [7] by describing the ions and molecules fluxes and 
integrating the morphological characteristics of cardiac cells through adapted geometries. 
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